Out-of-bounds Write
CWE-787
Overtime trend (NVD)
CVSS severity (NVD, All Time)
Per technology (GHSA, All time)
- 59%-Pip
- 22%-Nuget
- 7%-Maven
- 10%-Others
Short description
Extended description
Best practices to prevent this CWE
Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega, and the Strsafe.h library from Microsoft. These libraries provide safer versions of overflow-prone string-handling functions.
Phase: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Phase: Implementation
- Double check that the buffer is as large as specified.
- When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
- Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
- If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phase: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) and Position-Independent Executables (PIE). Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND.
Effectiveness: Defense in Depth
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND.
Effectiveness: Defense in Depth
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.