Improper Protections Against Hardware Overheating
CWE-1338
Short description
Extended description
Hardware, electrical circuits, and semiconductor silicon have thermal side effects, such that some of the energy consumed by the device gets dissipated as heat and increases the temperature of the device. For example, in semiconductors, higher-operating frequency of silicon results in higher power dissipation and heat. The leakage current in CMOS circuits increases with temperature, and this creates positive feedback that can result in thermal runaway and damage the device permanently.
Any device lacking protections such as thermal sensors, adequate platform cooling, or thermal insulation is susceptible to attacks by malicious software that might deliberately operate the device in modes that result in overheating. This can be used as an effective denial of service (DoS) or permanent denial of service (PDoS) attack.
Depending on the type of hardware device and its expected usage, such thermal overheating can also cause safety hazards and reliability issues. Note that battery failures can also cause device overheating but the mitigations and examples included in this submission cannot reliably protect against a battery failure.
There can be similar weaknesses with lack of protection from attacks based on overvoltage or overcurrent conditions. However, thermal heat is generated by hardware operation and the device should implement protection from overheating.
Best practices to prevent this CWE
Phase: Architecture and Design
Temperature maximum and minimum limits should be enforced using thermal sensors both in silicon and at the platform level.
Phase: Implementation
The platform should support cooling solutions such as fans that can be modulated based on device-operation needs to maintain a stable temperature.